Process Mining от Сбера

version 2.8.1

Руководство по установке продуктов "Process Mining от Сбера"

February 27, 2024

Содержание

Установка 1. Системные требования 1.1 Сценарии установки продуктов 1.2. Требования к серверам, мощностям, ПО 2. Установка программного обеспечения 2.1. Состав поставки 2.2. Установка 3. Обновление 4. Удаление 5. Проверка работоспособности 6. Установка TLS сертификата, выпущенного ЦС организации 6.1. Создание запроса на сертификат и выпуск сертификата 6.2. Конвертация приватного ключа и сертификата в требуемый формат base64 6.3. Переименование файлов приватного ключа и сертификата по шаблону именования 6.4. Копирование файлов приватного ключа и сертификата в целевое расположение 6.5. Копирование файлов корневых и промежуточных сертификатов в целевое 10 расположение 6.6. Запуск установки/обновления сертификата 10 7. Откат 10 8. Проблемы и пути их устранения (FAQ) 10 9. Проверка установки. Чек-лист 10 10. Схема сетевого взаимодействия 11 Сокращения и определения 12

1

1

1

1

3

3

3

6

6

6

7

7

9

9

9

Установка

1. Системные требования

1.1 Сценарии установки продуктов

Возможны различные сценарии установки продуктов:

- Установка продуктов «Process mining от Сбера» и «Task Mining от Сбера»
 - Устанавливаются компоненты: FE, BI, BE, ML, ETL, TM, Auth, PG и CH
- Установка продукта «Process Mining от Сбера»
 - Устанавливаются компоненты: FE, BI, BE, ML, ETL, Auth, PG и CH.
- Установка продукта «Task Mining от Сбера»
 - Устанавливаются компоненты: FE, TM, PG и CH.

Для развертывания компонентов продукта «Process Mining от Сбера» потребуется минимально один сервер, но рекомендуется выделить отдельно сервер под Приложение и отдельные серверы под каждую СУБД.

Для развертывания используется управляющий сервер (CI/CD), в роли которого выступает отдельный сервер, либо совмещенный с сервером Приложений (СП). При необходимости масштабирования предусмотрена возможность выделить под каждый компонент системы отдельный СП.

На сервере СУБД Postgresql будет расположен 1 экземпляр СУБД PostrgeSQL (PG), на сервере СУБД Clichhouse будет расположен 1 экземпляр СУБД ClickHouse (CH).

PG - компонент СУБД PosrgteSQL, содержит:

- БД sberprocessmining
 - Схема processmining (сервис pm-core)
 - Схема analytics (сервис pm-bi)
 - Схема auth (сервис pm-auth)
 - Схема etl (сервис pm-etl)
 - Схема taskmining (сервис pm-tm)

СН – компонент СУБД ClickHouse, содержит БД с пользовательскими данными для работы сервисов BE, BI, ML, ETL, TM.

- _00UserData_spm
- _01RawData_spm
- _02PreparedData_spm
- _03ResearchData_spm
- _01DictionaryData
- TaskMining

1.2. Требования к серверам, мощностям, ПО

1.2.1. Минимальные требования к конфигурации сервисов

	CPU	RAM	HDD
Сервер приложений (СП)	8	16	60
Сервер СУБД PostgreSQL	2	4	100

	CPU	RAM	HDD
Сервер СУБД ClickHouse	8	32	100
Управляющий узел ansible (CI/CD)	2	4	60

1.2.2. Требования к программному обеспечению

	Требуемое СПО	Версия СПО	download
OC	CentOS, RHLE	7.X	https://www.centos.org /download/, https://acc ess.redhat.com/downlo ads
	Debian	10.X	https://www.debian.or g/distrib/
Сервер приложения (СП)	Docker	20.Х и выше	https://docs.docker.co m/engine/install/debia n/
Сервер СУБД	PostgreSQL server	10.X - 13.X	Поставляются дистрибутивно
	ClickHouse server	22.X	Поставляются дистрибутивно
Сервис кеширования redis	Redis	7.0.9	Поставляются дистрибутивно
Управляющий ansible (CI/CD)	Ansible	2.9 и выше	https://docs.ansible.co m/ansible/latest/install ation_guide/intro_insta llation.html

1.2.3. Требования к сетевым доступам

Источник	Цель	Порты
Рабочая станция пользователя	Сервер приложений	tcp/80, tcp/443
Сервер приложений	Сервер СУБД PostgreSQL	tcp/5432
Сервер приложений	Сервер СУБД ClickHouse	tcp/8123, tcp/9000
Рабочая станция администратора	Сервер, Сервер СУБД	tcp/22

Сетевая схема описана в П10 данной инструкции.

1.2.4. Требование к DNS записи

Запись типа «А» указывающая на сервер приложения (пример: spm.company.ru)

1.2.5. Прикладное ПО состоит из сервисов

Имя сервиса	Описание
pm-ui	Компонент FrontEnd (FE)
pm-bi	Компонент для исследования и визуализации данных (BI)
pm-core	Компонент BackEnd (BE)
pm-ml	Компонент Machine Learning для анализа пользовательских путей (ML)

DNS

Имя сервиса	Описание
pm-etl	Компонент ETL для извлечения, анализа и загрузки данных (ETL)
pm-auth	Компонент авторизации пользователей (Auth)
pm-tm	Компонент сервиса логирования task mining (TM)
redis	Компонент кеширования данных

2. Установка программного обеспечения

2.1. Состав поставки

Поставка представляет собой набор архивов для каждого сервиса и СУБД, скрипты развертывания.

Имена архивов формируются по следующим правилам:

- 1. Приложения:
 - <Имя_сервиса>-<Версия_поставки>.tgz`
- 2. СУБД:
 - postgres-server-<Версия_postgres>.tgz
 - clickhouse-server-<Версия_clickhouse>.tgz
- 3. Сервис кеширования данных:
 - redis-<Версия_redis>.tgz
- 4. Скрипты развертывания:
 - deploy-<Версия поставки>.tar

2.2. Установка

2.2.1. Подготовка окружения

- 1. Выполнить на серверах Приложения и СУБД установку СПО Docker версии 20.Х и выше:
 - 1.1. Добавить репо docker (подробное описание есть в официальной инструкции
 - 1.2. Выполнить установку пакетов (docker и docker-compose):

apt-get install docker-ce docker-ce-cli containerd.io docker-compose-plugin

Есть возможность подключаться по протоколу ssh с управляющего сервера CI/CD.

Рекомендуется настроить подключение на серверы не по паролю, а по ssh-ключу.

Настройка подключения к серверу по ssh-ключу:

• 1.2.1. Команда создаст 2048-битную пару RSA ключей, приватный и публичный в домашней директории пользователя на сервере:

ssh-keygen —b 2048 ~/.ssh/<имя сформированного ключа>.pub <пользователь>@<ip-адрес сервера к которому будет идти подключение>

• 1.2.2. Далее тиражируем публичный ключ на сервер, к которому будет идти подключение командой:

ssh-copy-id -i ~/.ssh/<имя сформированного ключа>.pub <пользователь>@<ip-адрес сервера к которому будет идти подключение>

• 1.2.3. После выполнения команды на хосте в файле

/home/<пользователь>/.ssh/authorized_keys

будет прописан публичный ключ для подключения пользователем по ssh-ключу. 2. Получить файлы лицензии по запросу.

3. Скачать дистрибутивы по ссылке из поставки.

2.2.2. Развертывание управляющего сервера CI/CD

1. На управляющем сервере (CI/CD) выполнить установку ansible, используя менеджер пакетов python. В данной инструкции описан пример установки через **pip**, также предусмотрена возможность выполнить установку используя менеджеры пакетов OC формата **rpm и deb**.

Установка ansible:

• 1.1. Создать виртуальное окружение python venv:

python -m venv venv

• 1.2. Активировать venv:

source venv/bin/activate

• 1.3. Установить пакет ansible через пакетный менеджер python (pip):

pip install ansible

2. Распаковать архив deploy-<Версия_поставки>.tar на управляющем сервере (CI/CD).

/opt/deploy

- 3. Скопировать файл deploy-<Версия_поставки>/config.yml в папку /opt/config.yml
- 4. Заполнить файл окружения, /opt/config.yml указав параметры:

Внимание!

Копируется и заполняется при первой установке

- 4.1. ір-адреса серверов для развертывания компонентов:
 - app_host: <ip-aдрес для хоста компонентов Приложения>`
 - db_host: <ip-адрес для хоста компонентов СУБД Postgresql, метаданные>
 - dwh_host: <ip-адрес для хоста компонентов СУБД ClickHouse, аналитические данные>
- 4.2. Точка входа для пользователей:
 - ui_url: <точка входа для пользователей, указать FQDN>
- 4.3. Сценарий установки:
 - features: <значение зависит от того, какие продукты устанавливаем>
 - указываем значение ent если устанавливаем продукты process mining и task mining по сценарию 1 пункта 1.1 инструкции
 - указываем значение pm если устанавливаем только process mining по сценарию 2 пункта 1.1 инструкции
 - указываем значение tm если устанавливаем только task mining по сценарию 2 пункта 1.1 инструкции

- Логин и пароль для подключения по протоколу ssh к указанным серверам и способ подключения (значение параметра ssh_password опционально в случае добавления возможности входа по ключу):
 - ssh_user: «<имя пользователя>»
 - ssh_password: «<пароль>»
 - use local deploy: «yes/no»
- В случае использования сервера приложений в качестве управляющего узла ansible, т.е. когда все компоненты находятся на одном сервере и отсутствует управляющий сервер CI/CD устанавливаем значение параметра равным yes.
- 4.4. Задать логины и пароли автоматически создаваемого пользователя и админа безопасности Приложения
 - spm admin username: «<имя пользователя>»
 - spm_admin_password: «<пароль>»
 - auth admin username: «<имя пользователя>»
 - auth admin password: «<пароль>»

Примечание: при установке по сценарию 3 (пункта 1.1 инструкции) данные поля не заполняются.

- 4.5. Для СУБД PostgreSQL и ClickHouse задать пароли:
 - postgres_db_password: «<пароль>»
 - clickhouse_db_password: «<пароль>»

Если необходимо развернуть с отдельно развернутыми СУБД (не из дистрибутива) необходимо в конфигурационном файле указать данные для подключения, имя пользователя и пароль и предсоздать БД (п.1).

- 4.6. Задать пароль технического пользователя интеграции компонентов
 - analytics_integration_password: «<пароль>»

Примечание: при установке по сценарию №3 пункта 1.1 инструкции) данные поля не заполняются.

- 4.7. Данные для подключения к сервису кеширования redis
 - redis integration password: «<пароль>»

Примечание: при установке по сценарию №3 (пункта 1.1 инструкции) данные поля не заполняются.

- 4.8. Пароль генерируемого сертификата для ВЕ допускается оставить заданным по умолчанию.
 - ssl_certificate_password: «changeit»
- 4.9. Параметр для выбора расположения директории хранения образов на сервере Приложений:
 - source_image_on_app_server: «no» (Значение допускается оставить по умолчанию)
- 4.10. Директории хранения файлов образов и конфигурационных файлов сервисов:
 - source_images_storage_folder: «/opt/images»
 - app config folder: «/opt/spm»

На указанную директорию должны быть предоставлены права на создание папок и файлов для пользователя, подключающегося с управляющего сервера.

- 4.11. Скопировать вручную в каталог <app_config_folder>/license на сервере Приложения файлы лицензии:
 - license.json
 - license.json.sig

5. При необходимости шифрования паролей использовать ansible-vault. Пример шифрования пароля с использованием ansible-vault:

ansible-vault encrypt_string '<пароль, который нужно зашифровать>' – name '<имя параметра>'

6. Файл deploy-<Версия_поставки>/inventories/local/group_vars/all/env.yml содержит служебную информацию о портах, на которых развернуты сервисы, именах контейнеров, для которых предусмотрена возможность изменений в соответствии с требованиями некоторых окружений, но в общем случае дополнительной настройки не требуется.

2.2.3. Развертывание приложений и СУБД

После завершения этапа заполнения файла окружения выполнить запуск развертывания сервисов.

Команды запуска развертывания сервисов не зависят от выбора сценария установки.

1. В первую очередь запустить развертывание сервисов СУБД PostgreSQL и ClickHouse, выполнив playbook setup.yml командой:

ansible-playbook -i inventories/local setup.yml -e "@../config.yml"

2. После успешного выполнения развертывания сервисов СУБД запустить установку компонентов приложения, запустив playbook deploy.yml командой:

ansible-playbook -i inventories/local deploy.yml -e "@../config.yml"

3. В случае если используется шифрование паролей при помощи ansible-vault добавить к команде запуска развертывания параметр:

--ask-vault-pass

3. Обновление

- 1. Скачать дистрибутивы по ссылке из поставки.
- 2. Распаковать архив на управляющем сервере (CI/CD) deploy-<Версия_поставки>.tar
- 3. Запустить установку компонентов приложения, запустив playbook deploy.yml командой:

ansible-playbook -i inventories/local deploy.yml -e "@../config.yml"

4. В случае обновления до версии HotFix, когда в состав поставки входит только 1 компонент запустить playbook развертывания обновляемого компонента поставки:

ansible-playbook -i inventories/local <имя_компонента>.yml -e "@../config.yml"

4. Удаление

Для удаления продукта необходимо выполнить команды для остановки, удаления данных и контейнеров, проверки удаления:

docker stop \$(docker ps -a -q) && docker

rm \$(docker ps -a -q) && docker volume rm clickdata pgdata && docker ps -a

5. Проверка работоспособности

1. Проверить что все компоненты развернуты и запущены в docker контейнерах:

docker ps --a

В выводе должны быть все компоненты в статусе Up:

CONTAINER ID a857efcb46fc ecd95b4c9bb4 e64ae4ced97b ffaa5b7a2333 f690a641220f c98bfe102b43 153044fcda85 391688dbea4c	IMAGE pm-auth:2.8.1 pm-auth:2.8.1 pm-core:2.8.1 pm-t1:2.8.1 pm-t1:2.8.1 pm-u1:2.8.1 pm-u1:2.8.1 redis:7.8.9 clickhouse-server:22.10.4	COMMAND "/ot/bitnami/script" "/docker-entrypoint" "/docker-entrypoint" "/docker-entrypoint" "/ocker-entrypoint" "/ot/bitnami/script" "/entrypoint.sh"	CREATED 2 days ago 2 days ago	STATUS Up 2 days Up 2 days Up 2 hours Up 2 days Up 2 days Up 2 days Up 2 days Up 2 days Up 2 days	PORTS 0.0.0.0:88990->8090/tcp, 0.0.0.0:9090->9090/tcp 0.0.0.0:8020->8020/tcp	NAMES pm-auth pm-ml pm-core pm-etl pm-bi pm-ui redis clickhouse-server
391688dbea4c	clickhouse-server:22.10.4	"/entrypoint.sh"	2 days ago	Up 2 days		clickhouse-server
a8163caa507a	postgres:13.5	"docker-entrypoint.s"	2 days ago	Up 2 days		postgres-server

В случае если был выбран сценарий №1 или сценарий №3 установки продуктов:

c29023c852bb pm-tm:2.6.1 "dotnet ProcessMinin…" 5 hours ago Up 5 hours pm-tm

2. Проверить логи работы компонентов сервиса в случае, если контейнер с компонентом не запустился. Для получения лога конкретного компонента выполнить команду:

```
docker logs \--tail \<количество строк лога\> \<имя контейнера\>
```

Пример:

docker logs \--tail 1000 pm-ui

- 3. Проверка портов в случае возникновения проблем, например, telnet по портам 80 и 443 для FE.
- 4. Для сценария №1 и сценария №2 установки:
 - Проверка входа на UI по ссылке ui_url пользователем spm_admin_username.
 - Данные для ui_url и spm_admin_username были заданы в окружении развертывания.
 - В качестве первоначальной проверки: успешность логина пользователем spm_admin_username через компонент авторизации pm-ui по ссылке ui_url.
- 5. Для сценария №3 установки:
 - Перейти по ссылке: <ui_url>/events
 - Пользователь увидит форму ввода логина и пароля:

/events/	
	Аутентификация
	Пароль
	Войти

6. Установка TLS сертификата, выпущенного ЦС организации

6.1. Создание запроса на сертификат и выпуск сертификата

Важно

В случае необходимости выпуска собственного серверного сертификата, подписанного Центром сертификации организации, требуется выполнить установку TLS сертификата. Установка выполняется после успешной установки компонентов Sber Process Mining.

- 1. Создание ключа и запроса на сертификат одним из двух способов:
 - 1.1. прописав параметры напрямую в команде

```
openssl req -newkey rsa:2048 -nodes -keyout servercert.key -out
cervercert.csr -subj "/CN=FQDN/OU=Organization Unit/O=Organization/C=RU"
```

Заполнить Параметры:

- CN=FQDN
- OU=Organization Unit
- O=Organization
- C=RU

В результате выполнения команды будут созданы файлы ключа и запроса на сертификат:

- servercert.key
- servercert.csr
- 1.2. с использованием файла конфигурации (предварительно создать файл конфигурации)

```
openssl req -out servercert1.csr -newkey rsa:2048 -nodes -keyout
servercert.key -config certificate.conf
```

Пример содержимого файла конфигурации certificate.conf:

```
[req]
prompt = no
default_bits = 2048
distinguished_name = dn
req_extensions = req_ext
[dn]
countryName = RU
organizationName = <Имя организации>
commonName = <CN сертификата>
organizationalUnitName = <Наименование организации>
[req_ext]
subjectAltName =@alt_names
[alt_names]
DNS.1 = <FQDN1>
DNS.2 = <FQDN2>
```

В результате выполнения команды будут созданы файлы ключа и запроса на сертификат:

- servercert.key
- servercert.csr

Внимание!

Ключ – nodes не шифрует содержимое файла закрытого ключа.

2. Подписание, выпуск серверного сертификата:

Выпуск сертификата выполняется Удостоверяющим Центром (далее - УЦ) с использованием ключ и сертификат УЦ.

Команда для выпуска сертификата с использованием ключа и сертификата УЦ:

```
openssl x509 -req -CA issuer.cer -CAkey issuer.key -extensions server_cert
-in <hostname>.csr -out <hostname>.cer -days 2048 -CAcreateserial
```

- issuer.cer сертификат-подпись УЦ
- issuer.key ключ УЦ,

- <hostname>.csr запрос на сертификат сервера (п.1).
- 3. Проверить выпуск сертификата:

openssl x509 -noout -text -in <hostname>.cer

6.2. Конвертация приватного ключа и сертификата в требуемый формат base64

В случае если при выпуске исходный файл сертификата был сформирован в формате pfx (хранилище p12), то требуется преобразовать его в отдельный файл сертификата и отдельный файл закрытого ключа. И далее сконвертировать полученные ключ и сертификат в формат base64.

1. Посмотреть содержимое хранилища сертификата:

openssl pkcs12 -in <имя_файла_cepтификатa>.pfx -nodes -passin pass:<пароль>

Извлечение ключа:

openssl pkcs12 —in <имя_файла_хранилища>.pfx -nocerts -nodes -out <имя_файла_ключа1>.key

Вводим пароль от хранилища и получаем файл ключа.

Конвертация ключа из РКСS#8 в base64:

openssl pkey -inform PEM —in <имя_файла_ключа1>.key -outform PEM —out <имя_файла_ключа2>.key

Извлечение сертификата:

openssl pkcs12 -in <имя_файла_xpанилища>.pfx -clcerts -nokeys –out <имя_файла_cepтификата1>.pem

Вводим пароль от хранилища и получаем файл ключа.

Конвертация сертификата из РКСS#8 в base64:

openssl x509 -inform PEM -in <имя_файла_cepтификатаl>.pem -outform PEM -out <имя_файла_cepтификата2>.pem

2. В случае если ключ и сертификат выпущены в формате DER - конвертировать в base64: Конвертация ключа:

openssl pkey -inform der -outform pem -in <имя_файла_ключа_в_формате_DER>.key -out <имя_файла_ключа_в_формате_BASE64>.key

Конвертация сертификата:

openssl x509 -inform der -outform pem -in <имя_файла_сертификата_в_формате_DER>.cer —out <имя_файла_сертификата_в_формате_BASE64>.pem

6.3. Переименование файлов приватного ключа и сертификата по шаблону именования

Файл серверного сертификата должен называться: <URL-входа-в-систему>.crt

Файл ключа должен называться: <URL-входа-в-систему>.key

Название должно быть таким же как значение переменной ui_url файла конфигурации config.yml

Пример: spm.company.crt и spm.company.key

6.4. Копирование файлов приватного ключа и сертификата в целевое расположение

Скопировать файлы ключа и сертификата в папку: /opt/spm/certs

6.5. Копирование файлов корневых и промежуточных сертификатов в целевое расположение

- скопировать корневой сертификат root са в формате base64 в файл trusted_root_ca.crt в папку: /opt/spm/certs
- скопировать промежуточный сертификат sub са в формате base64 в файл trusted_sub_ca.crt в папку: /opt/spm/certs

6.6. Запуск установки/обновления сертификата

Сертификаты обновляются вне зависимости от установки релиза. Если работы по обновлению сертификатов выполняются вместе с установкой или обновлением релиза, то запуск обновления сертификатов необходимо провести после установки/обновления релиза и проверки работоспособности запуском playbook:

ansible-playbook -i inventories/local tasks.yml -e "@../config.yml" -e "cert_renew=yes"

где ./config.yml путь до файла конфигурации с которым выполняется деплой или обновление системы.

7. Откат

Откат до предыдущей версии не предусмотрен ввиду отсутствия обратной совместимости после обновления СУБД. Для исправления ошибок выпускается и устанавливается релиз HotFix.

8. Проблемы и пути их устранения (FAQ)

В случае возникновения ошибки развертывания через ansible необходимо проанализировать текст ошибки на предмет причины возникновения.

В случае инфраструктурных проблем выполнить поиск данной ошибки по общедоступным источникам, официальной документации на платформу ОС. Если решение найти не удалось - выписать название ansible TASK, текст ошибки и передать сопровождению.

9. Проверка установки. Чек-лист

Сокращения

Условие	Результат
Развертывание выполнено без ошибок	Запущенные playbook отработали без ошибок
Все развернутые сервисы запущены	Результат команды docker ps –а возвращает, что все сервисы находятся в статусе Up
В случае установки по сценарию 1 и 2: Вход на UI успешен	Вход на UI по ссылке ui_url пользователем spm_admin_username успешен
В случае установки по сценарию 3 переход по ссылке <ui_url>/events</ui_url>	Переход по ссылке <ui_url>/events, появится форма авторизации *</ui_url>

10. Схема сетевого взаимодействия

- дветом показаны не аутентифицированные запросы.
- дветом отмечены аутентифицированные запросы.
- → цветом отражены взаимодействия между компонентами внутри системы.
- 🔶 выделены обращения к базам данных.

Описание схемы сетевого взаимодействия:

1. Пользователь из браузера отправляет запрос. Запрос попадает во FE и далее в BE где проверяется наличие корректного JWT-токена. В случае отсутствия JWT-токена пользователь перенаправляется на страницу аутентификации компонента Auth для ввода логина и пароля. Если JWT-токен присутствует, то пользователь авторизован и имеет

возможность выполнять запросы к системе. В противном случае пользователь аутентифицируется в сервисе авторизации Auth и получает JWT-токен.

- 2. FE отправляет и получает данные от BE и BI, Auth.
- 3. ВЕ по REST API отправляет запросы в ВІ и ML, получает от них ответ.
- 4. ВЕ обращается к БД spm_processmining в СУБД PostgreSQL.
- 5. ВІ обращается к БД spm_analytics в СУБД PostgreSQL.
- 6. Auth обращается к БД spm_auth в СУБД PostgreSQL.
- 7. BI, ML и BE обращаются к базам данных в СУБД ClickHouse для построения аналитики на основе загруженных пользователем данных.
- 8. Данные от агентов логирования на рабочих станциях пользователей попадают в сервис логирования и в БД TaskMining.

Сокращения и определения

Сокращение	Описание
FE	Компонент FrontEnd (pm-ui)
ВІ	Компонент для исследования и визуализации данных (pm-bi)
BE	Компонент BackEnd (pm-core)
ML	Компонент Machine Learning для анализа пользовательских путей (pm-ml)
ETL	Компонент извлечения, преобразования и загрузки данных
Auth	Компонент авторизации пользователей (pm-auth)
ТМ	Компонент логирования task mining
PG	СУБД Postgresql
СН	СУБД Clickhous
СП	Сервер Приложений
OC	Операционная система

Продукт «Process Mining от Сбера» включает в себя компоненты FE, BI, BE, ML, ETL, Auth, PG и CH.

Продукт «Task Mining от Сбера» включает в себя компоненты FE, TM, PG и CH.